
FLOW ROUND PERMEABLE CONTOURS 
(OB OBTEKANIIPBONITSAYElYKBKONTIJROV) 

PMM Vo1.22, No.2, 1958, pp.220-225 

M. V. TRETIAKOV 

(Novosibirsk) 

(Received 2 July 1958) 

1. Stating the problem. We consider the problem of the flow round an 

arbitrary, smooth, closed, uniformly permeable contour in a potential 

stream of ideal fluid. The problem will be soLved under the hypotheses 

formulated by Rakhmatulin [ 3 1 : 
1. At all points of the contour, normal components of fluid velocity 

are continuous; the tangential velocity components, however, are allowed 

to be discontinuous. Consequently, a permeable contour turns out to be a 

line of discontinuity in velocity and pressure. 

2. The flow is assumed to be steady and irrotational. 

3. The contour is permeable uniformly and at every point of the con- 

tour the pressure drop Ap and velocity of penetration vi0 of fluid 

particles across the contour are connected by the rule: 

Ap = avio (1.1) 

where a is a parameter of permeability of the contour material, to be 

determined experimentally. We now formulate the boundary conditions of 

the problem. 

1. According to the first fundamental hypothesis, at all points of the 

permeable contour the normal component of velocity vnIo of the external 

flow is equal to the normal component of velocity vn20 of the internal 

flow, i.e. 

v,u” = %zO (1.2) 

‘Ihe suffices 1 and 2 will be used to indicate quantities in the external 
and internal fluid domains respectively. 

2. From the second fundamental hypothesis it follows that the 

Bernoulli-Euler equation is satisfied along a streamline of the flow. 

Accordingly, from this equation and the first boundary condition (1.2), 

for a pressure drop hp at a point on the contour, we have 
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where vrl and ur2 are tangential components of velocity at points on the 

contour. Taking account of (l.l), we get the second boundary condition: 

% (v*O + v,;) (vaO - t’,lO) = aui” (1.3) 

TO solve the problem we replace the permeable contour by a vortex 

layer, the density of which we shall choose to fulfill the boundary con- 

dition. 

Therefore let L (see Figure) be the uniformly permeable smooth contour. 

We denote by y = y(s) the density of the vortex layer regarded as a 

function of the curvilinear coordinate s along the contour L. Let the 

functions 

5=X(S), Y = Y(S) (f-4) 

be parametric equations of our contour. 

We denote by so and s the curvilinear coordinates, and by t and to the 

corresponding complex coordinates, of a fixed and general point respect- 

ively on our contour. In what follows we shall call the points themselves 

corresponding coordinates. 

For a positive direction of circuit on 15 we take a direction such that 

the domain bounded by the contour f4 lies on the left. 

We denote by v and 8 the angles which the tangents to the contour at 

the points t0 and t make with the x-axis, and by @ the angle which the 

chord passing through these points make with the x-axis. 

If ds is the length of an element of arc of the contour, then the 

vortex strength on this element will be y(s)ds. Hence the complex velo- 

city at some point 2, induced by the vortex layer distributed along the 

contour, is 

Taking into consideration that ds=e’iedt, we get 

” 

(2T.so - ivgo)b = - &- \ 
t'(S)e-io 

t-z dt (1.5) 

L 

'Ihe integral on the right is a Cauchy type of integral for the func- 

tion y(s)e"' which Lavrentev [ 1 I has called a "vortex function*. 

We shall find the limiting values of the complex velocity at the point 

to of the contour, suitably denoting the limiting values: when approach- 

ing from the side of the positive direction of the normal by the index 

plus, and when approaching from the side of the negative direction of the 

normal by the index minus. 

According to the formula of Sokhotski-Plemel for the limiting value of 

the Cauchy-type integral, we have 
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Fig. 1. 

@x0 -i21~‘)~+ = - 
[ 
Y (so) 2e _’ ‘7 + &- iy I”‘“;;” dt ] 

@x0 - i V”O)b_ = - 
[ 

Y b-0) 
-2e 

_. 
ty + & \ y y;:” dt] 

L 

We now change the form of the integral 

(1.6) 

(1.7) 

Taking logarithms and differentiating the identity t - t,, = reie, we 

get 

df - = $ + id$ 
t-to 

We have irmnediately from the figure 

cosa = x (4 - x (so) 
r , sin8 = Y (4 - Y 00) 

r 

(1.8) 

dx (4 - =cose, dy (4 - = sin 6, 
ds ds 

in addition to which 

dx (so) - = cosv, 
dso 

dy 00) - =sinv (1.9) 
dso 

9 = arc tg Y (4 - Y 60) 

x (4 - s b-0) 
(1.10) 

Hence, taking into con’sideration the identities (1.91, we get 

$8 sin a -- 
&- r 

(a = 8 - 8) (1.11) 

Consequently we have 

dr = $ds = cos ads, d8 =;+ds= ‘+ds 

Substituting this into the identity (1.8) gives 

dt ’ -=+ 
t - to 
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and the integral (1.7) may be written thus: 

Substituting this into the equations (1.6) and comparing the real and 
imaginary parts of these equations, we obtain: 

(vx”)b+ = - + COS v + & \ y(s) y ds 
L 

(v,O)b_ - 9 COSV + g-Sy(.s)sq& 
L 

(v;)b_ I ’ (2so) a - sm v - & \ y(s) v & 

L 

(1.12) 

We shall now use the expressions relating the normal and tangential 

components of velocity at a point on 
along the axes: 

the contour with the components 

rzo = a,’ cos v + vyo sin v, 

Then according to f 1.121, putting 

p,” = - v,’ sin Y + vyo cos Y (1.13) 

X=0-v, weget 

(v&+ 
Y (so) =-z +z’x 

5 

y(s)Fds, (v,&+=-&\y(@$-ds (1.14) 

(&‘)h_ = ++&s,os~ds, (&“)e = - ,a iY(‘) co;h - ds (1.15) 
L L 

‘Ihe normal un and tangential vr velocity components of the incident 
stream are continuous at all points of the contour and consequently, for 
both the external and internal parts of the stream, are expressed by the 
formulae: 

29, = v, &OS Y, 2Ja = -vVcosinv (1.16) 

Comparing the second of the equations (1.14) and (1.15) and remember- 
ing that they are components relative only to the incident. stream, we see 
that the first boundary condition (1.2) of the problem is satisfied. 

From the first identities of (1.14), (1.15) and (1.16) we get 

vr1* = (VTO)b_ + VT =q + &$y(s)‘+ds+v,cos-v 
I* 

h,o = (.o,o)b+ + VT =-9 + &\y(s)+ds + v,cosv 
.L 

From the second identities of (1.15) and (1.16) we have 
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Substituting the expressions found for the velocity components of the 
flow under consideration into the second boundary condition (1.3) of our 
problem, we have 

Y(%)fJ(Z,,cosv + ~s~(s)~ds)--~-Sy(s)~ds= az,,sinv (1.17) 
L L 

This is a singular integral equation for the particular determination 
of the function y (so 1, the density of the vertical layer in our problem. 

The. parameter of permeability a increases with the compactness of the 
permeable contour. For a compact contour a = me As a + m the equation 
(1.17) reverts to the equation 

(1.18) 

obtained by Lavrent’ev [ 11, and solves the problem of a closed conpact 
contour in a potential flow. 

2. A t~thd of ~01ting the basic equation (Ll?). Differentiating the 
identity (1.10) with respect to so and using the identity (1.91, we have 

In addition to this 

li& sin h 
x0=-Y-- (2.1) 

dlnr 1dr -=-- 
ds, r ds, 

& the other hand 
,iv 

r=(t-tt,)e-i@, ~=_$$$-i$=-__i~ 
I -t, 

Consequently 

Gn the basis of the identities (2.1) and (2.21, the equation (1.17) 
may be written thus: 

l * -f(t) e-‘” 
y (s,,) p (rim COB v + & \ y(s) ;;O. ds) - ‘& \ t-t dt= 0 

L I. 

= avm sin v + $- \ y(s) z:. ds 
L 

(2.3) 

Since ds and ds, on one and the same contour L will be equivalent, 
then 

’ -2x sy@) ‘2 ds = ;- \ y [s (B)] d3 = &- = const 
L L 

(2.4) 

Furthermore, the circulation P of the velocity of the stream around 
the contour will equal 
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r= 
l_. 

At the same time it is clear that 

&lo = @,‘)b_ + 2)x, vy10 = (uy’)b_ + 2’y (u, = 2i, , z)y = 0) 

‘Ihen according to the latter pair of relations in (1.12) and the last 

two identities in (1.91, we have 

r+_ 
5 
y (so) ds, + am 5 cos v ds, i- S[ s & y(s) + ds] ds, (2.5) 

L L L L 

01 the basis of the identities (2.1), (2.4) and the obvious relations 

k \ y (sJ ds,, = Q = con&, \ cos vds = 0 (2.6) 
L L 

we get 

I’=Q$KI (2.7) 

where 1 is the length of the contour L. * 

From the expressions (2.4) and (2.6) for the values of K and Q it 
follows that they are of the same sign and will vanish simultaneously. 
Thus the constant K is inmediately related to the circulation K’ around 
the contour by the identity (2.7) and becomes zero when K’= 0. 

Since the value of the circulation l? for the flow round smooth closed 
bodies might be given arbitrarily, we may advance arbitrarily a constant 
quantity K, defining thereupon the appropriate value of the circulation 
r according to the formula (2.7). 

Now taking account of (2.4), the equation (2.3) may be written thus: 

y (to) p (v, cos v + K)+ -$ s y(t) ‘-~‘;p~:~-” dt = uud, sin v + iaK 
G-1 

I. 
For this equation we have 

A (t) = p (2)ca cos 6 +K)* K (t,, 8) = - $ e--i(s--V) 

the functions A(t) and K(t,,t) satisfying the condition H (Holder) on the 
contour L 

B (t) = K (t, t> = - + ai 

~(t)=~(t)+~~t)=p(~~cos~+~)-~u~#O on L 

D(t)--A(t)-_(t)=p(u,cosB+K)+ +ai#O on L 

Hence according to the terminology of Muskhelishvili I2 I , equation 
(2.8) is a singular integral equation of a standard type. 

The index of this equation is 
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n*= &[I, P (v, cos e +m + 11~ ia 
p (77, cos e +K) - l/z ia I =o 

L 

‘Ihus equation (2.8), according to the same terminology, will be a 

Quasi-Fredholm equation and can be solved by the method of regularisation. 

The regular type operator for equation (2.8) can be taken, for example, 

to be 

and after the application of this operator to both sides of equation 

(2.81, Fredholm’s equation is obtained, which will be equivalent to (2.81. 

It is possible also to regularise equation (2.X) by using the method of 

Carleman and Vekua. 

For the study of the flow of a potential stream without circulation 

round a uniformly permeable, smooth contour, the reasoning mentioned 

above remains valid, only it is necessary to take K = 0, 

By way of example, we consider the problem of the flow of a potential 

stream round a uniformly permeable circle of radius R. In this case we 

take the centre of the circle to lie at the origin of the coordinate 

axes and q5 and $O to be the central angles of the points s and so. It 

follows &mediately from the figure, therefore, that 

cos Y = - sin ‘pO, sin v = cos ‘pO, )i= ‘p-90 
-, 2 

r=ZRsinq 

ds = Rdq, ‘t ds =$ctg Fdq, yds = ;dlp 

Then the value of K, defined by the integral (2.4), will equal 

and, after a change of variable, the basic equation (1.17) (or, alter- 

natively, equation (2.8) ) may be written 

z?c 

Y (PO) p (r= sin ‘P@ -K,)+ 2s y(q$ctgvdlp= -~ac,ocoscp, (2.9) 

Applying to both sides of thii singular equation the regular operator 

MY_p(v,sincp,-I(,)Y(FP~)- ~~Y(p)ctg’~d~ 

0 

we get a Fredholm equation, the unique solution of which will be 

Y(~~) = - 
4apv,2 sin (p. cos p, + 2as(z~, sin lo - rC,) 

4p” (vo, sin p0 - K,)’ + a2 f2.20) 

This function gives the solution of the problem of the flow of a 
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potential stream past a uniformly permeable circle. 

As a + Q) in the limit, the equation (2.9) becomes 

(2.11) 

the solution of which is 

y (cpJ = - 20, sin ‘pO + C (2.12) 

a function giving the solution of the problem of the flow of a potential 
stream past a compact circle. Moreover, in the 
with circulation, it follows from the limiting 
(2.10) that it is necessary to choose C = 2KQ 
circulation to take C = 0. 
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